Nanomechanics of Type I Collagen.
نویسندگان
چکیده
Type I collagen is the predominant collagen in mature tendons and ligaments, where it gives them their load-bearing mechanical properties. Fibrils of type I collagen are formed by the packing of polypeptide triple helices. Higher-order structures like fibril bundles and fibers are assembled from fibrils in the presence of other collagenous molecules and noncollagenous molecules. Curiously, however, experiments show that fibrils/fibril bundles are less resistant to axial stress compared to their constituent triple helices-the Young's moduli of fibrils/fibril bundles are an order-of-magnitude smaller than the Young's moduli of triple helices. Given the sensitivity of the Young's moduli of triple helices to solvation environment, a plausible explanation is that the packing of triple helices into fibrils perhaps reduces the Young's modulus of an individual triple helix, which results in fibrils having smaller Young's moduli. We find, however, from molecular dynamics and accelerated conformational sampling simulations that the Young's modulus of the buried core of the fibril is of the same order as that of a triple helix in aqueous phase. These simulations, therefore, suggest that the lower Young's moduli of fibrils/fibril bundles cannot be attributed to the specific packing of triple helices in the fibril core. It is not the fibril core that yields initially to axial stress. Rather, it must be the portion of the fibril exposed to the solvent and/or the fibril-fibril interface that bears the initial strain. Overall, this work provides estimates of Young's moduli and persistence lengths at two levels of collagen's structural assembly, which are necessary to quantitatively investigate the response of various biological factors on collagen mechanics, including congenital mutations, posttranslational modifications and ligand binding, and also engineer new collagen-based materials.
منابع مشابه
The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Background Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...
متن کاملEffect of Collagen Type I on the Hydroxyproline Content in Experimentally Induced Injury in Achilles' Tendon in Dogs
Objective- To determine the effect of collagen type I on hydroxyproline content in Achilles tendon in dogs. Design- Experimental in vivo study. Animals- A total of 12 adult dogs. Procedure- Under general anesthesia and aseptic condition the dorsal surface of right Achilles tendon was exposed and after complete separation of connective tissue, it was splitted (striking 10 times) in full thic...
متن کاملA study of the kinds of placental collegens from Iranian women to determine the standard rate of placental collagen
Background: Alteration in polymorphism of tissue collagens has been reported in association with some genetic and metabolic disorders. These alterations can be estimated quantitatively by measuring alpha-chain monomers derived from the polymeric form of collagens following treatment with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We studied the rate of placental colla...
متن کاملType of Aerobic Training Effect on Cardiac Muscles MIR29A and Collagen I Gene Expression in Diabetic Male Rats
Objective: High intensity interval training (HIIT) and continues aerobic training have cardio-protective effects in diabetic rats. The aim of this study was to compare the effect of HIIT and continues aerobic training (CAT) on MIR29A and collagen I gene expression in heart of diabetic male rats. Materials and Methods: In this randomized controlled clinical trial, 18 male diabetic rats were stu...
متن کاملExpression of Collagen Type II and Osteocalcin Genes in Mesenchymal Stem Cells from Rats Treated with Lead acetate II
Background: Lead is one of the sustainable metals with devastating effects on many tissues. This study, examined the adverse effect of lead poisoning on the gene expression of collagen type II and osteocalcin by mesenchymal stem cells (MSCs) cultured in chondrogenic and osteogenic media, respectively. Methods: We used 18 male Wistar rats, divided in 3 groups. In addition to libitum feed as the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 111 1 شماره
صفحات -
تاریخ انتشار 2016